IR3Y38M

DESCRIPTION

The IR3Y38M is a bipolar single-chip signal processing IC for CCD area sensors which includes correlated double sampling circuit (CDS), clamp circuit, automatic gain control amplifier (AGC), reference voltage generator, black level detection circuit, 10-bit analog-to-digital converter (ADC), and serial interface for internal circuits.

FEATURES

- Low power consumption : 315 mW (TYP.)
- Wide AGC range : 12 to 43.5 dB
- High speed sample-and-hold circuits : pulse width 12 ns (MIN.)
- Built-in standby mode for power saving applications
- Built-in serial interface to control the AGC gain, maximum gain and offset adjustment
- 10-bit ADC operating up to 18 MHz
- Digital interface for operating 3.3 V logic ICs
- Single +5 V power supply
- Package :

48-pin QFP (QFP048-P-0707) 0.5 mm pin-pitch

CCD Signal Process \& Digital Interface IC

PIN CONNECTIONS

BLOCK DIAGRAM

PIN DESCRIPTION

(The voltage is measured on condition that VCC 1 to $\mathrm{VcC} 6=+5.0 \mathrm{~V}$, VLOGIC $=+3.3 \mathrm{~V}$.)

PIN NO. PIN NAMEVOLTAGE			EQUIVALENT CIRCUIT	DESCRIPTION		
17	Vcc4	5.0 V		Analog power supply pin of the A/D converter.		
18	GND4	0.0 V		Analog GND pin of the A/D converter.		
19	SDATA	$\prod_{<0.7 \mathrm{~V}}^{>2.1 \mathrm{~V}}$		Data input pin of the serial interface. TRUTH TABLE		
				SDATA	SCK	Action
				DATA	\uparrow	SHIFT
				0	\downarrow	-
				1	\downarrow	STORE
20	CLPCAP	3.2 V		Bias decoupling pin of the CDS signal clamp circuit. This pin is connected to the GND1 via a capacitor.		
21	CCDIN	2.5 V		Signal input pin of the CDS. Input CCD signal to this pin via a capacitor.		
22	REFIN	2.5 V		Reference input pin of the CDS. This pin is connected to the GND1 via a capacitor.		
23	GND1	0.0 V		GND pin of the CDS/AGC. Pay careful attention to board layout of the GND1 because the CDS/AGC are noise-sensitive circuitry.		
24	SHISET	1.7 V		Operation current setting pin of the CDS and $\overline{\mathrm{S}} / \mathrm{H}_{3}$ circuits. This pin is connected to the GND1 via a resistor. The slew rates of the $\overline{\mathrm{S}} / \mathrm{Hs}$ are in inverse proportion to the value of the resistor.		

PIN NO.	PIN NAME	VOLTAGE	EQUIVALENT CIRCUIT	DESCRIPTION
25	Vcc1	5.0 V		Power supply pin of the CDS/AGC.
26	REFCAP	3.2 V		Bias decoupling pin of the CDS reference clamp circuit. This pin is connected to the GND1 via a capacitor.
27	$\overline{\text { STBY }}$	$\begin{gathered} 5.0 \mathrm{~V} \\ \text { (open) } \\ >2.1 \mathrm{~V} \\ \prod_{<0} \square_{0}\left[\begin{array}{c} \text { a } \end{array}\right. \end{gathered}$		Standby function control pin. All actions stop and the power consumption is decreased when low. The threshold voltage has 0.4 V hysteresis. Connect to the Vcc if not used.
28	$\overline{C L P}$	$\begin{gathered} >2.1 \mathrm{~V} \\ \square_{<0.7} \square \square \end{gathered}$		Pulse input pin of the CDS feedthrough level clamp. Signal is clamped when low.
29	$\overline{\mathrm{S}} / \mathrm{H}_{1}$			Pulse input pin of the $\overline{\mathrm{S}} / \mathrm{H}_{1}$. Signal is sampled when low.
30	$\overline{\mathrm{S}} / \mathrm{H}_{2}$			Pulse input pin of the $\overline{\mathrm{S}} / \mathrm{H} 2$. Signal is sampled when low.
31	S̄H3			Pulse input pin of the $\overline{\mathrm{S}} / \mathrm{H} 3$. Signal is sampled when low.
32	$\overline{\text { OBP }}$			Pulse input pin of the OPB clamp and bias error amplifier. Signal is clamped when low.
33	OBCAP	3.7 V		Clamp capacitor pin of the optical black clamp (OPB clamp) circuit. Connect to the GND2 via a capacitor.

PIN NO.	PIN NAME	VOLTAGE	EQUIVALENT CIRCUIT	DESCRIPTION
34	OFSCTL	$\begin{gathered} 2.15 \\ \text { to } \\ 2.30 \mathrm{~V} \end{gathered}$		Decoupling capacitor pin of the blanking offset control D/A converter. Connect to the GND1 via a capacitor.
35	$\overline{\text { BLK }}$	$\begin{gathered} >0.1 \mathrm{~V} \\ \prod_{<0.7 \mathrm{~V}} \square^{2} \end{gathered}$		Blanking pulse input pin. The output of the AGCOUT pin is blanked when low. The blanking level can be controlled by the serial interface.
36	Vcc2	5.0 V		Power supply pin of the $\overline{\mathrm{S}} / \mathrm{H}_{3}$ and OPB clamp circuits.
37	GND2	0.0 V		GND pin of the $\overline{\mathrm{S}} / \mathrm{H}_{3}$ and OPB clamp circuits.
38	Vcc3	5.0 V		Power supply pin of the output buffer circuit connected to the AGCOUT pin.
39	AGCOUT	$\begin{gathered} 0.9 \mathrm{~V} \\ (\overline{\mathrm{OBP}}=\mathrm{L}) \end{gathered}$		Signal output pin of the AGC. Connect to the ADIN pin via a capacitor.
40	GND3	0.0 V		GND pin of the output buffer circuit connected to the AGCOUT pin.
41	AGCCTL	$\begin{gathered} 2.5 \\ \text { to } \\ 3.8 \mathrm{~V} \end{gathered}$		Decoupling capacitor pin of the AGC gain control D/A converter. Connect to the GND1 via a capacitor.

PIN NO.	PIN NAME	VOLTAGE	EQUIVALENT CIRCUIT	DESCRIPTION
42	ADOFS	3.3 V (open) Input range 1.6 to 5.0 V		Voltage adjustment pin of the ADC black level clamp. This pin is biased at 3.3 V from the inside of the IC. Connect to the GND4 via a capacitor if not used.
43	ADIN	$\frac{1.4 \mathrm{~V}}{(\overline{\mathrm{ADCLP}}=\mathrm{L})}$		Signal input pin of the ADC. Connect to the AGCOUT pin via a capacitor. This capacitor is also used as the clamp capacitor of the ADC blank level clamp.
44	NC			No connection. It is recommended to connect to GND for better heat radiation and avoiding noise.
45	$\overline{\text { ADCLP }}$	$\begin{gathered} >2.1 \mathrm{~V} \\ \square 0.7 \mathrm{~V} \end{gathered}$		Pulse input pin of the ADC black level clamp. Signal is clamped when low. When the ADOFS is opened, the clamped level is set to make the ADC output 61 (decimal).
46	VRT	3.90 V		Upper reference decoupling pin of the ADC. Connect to the GND4 via a capacitor.
47	VRB	1.95 V		Lower reference decoupling pin of the ADC. Connect to the GND4 via a capacitor.

PIN NO. PIN NAME	VOLTAGE	EQUIVALENT CIRCUIT	DESCRIPTION		
48	VLOGIC	3.3 V		VCC5	ADC output voltage setting pin. The high level voltage of the DOo to DO9 pins is set to VLOGIC -0.2 V. It is recommended to connect to the power supply of the following logic ICs.

FUNCTIONAL DESCRIPTION

CDS Circuit

The clamp circuit clamps the feed-through level of the CCD signal with the $\overline{\mathrm{CLP}}$ pulse. Then the $\overline{\mathrm{S}} / \mathrm{H}_{1}$ circuit samples the signal period of the one with the $\overline{\mathrm{S}} / \mathrm{H} 1$ pulse and holds on. Thus the video signal is obtained. But this signal has a level drop caused by the reset pulse of the CCD signal, and for removing it, the $\overline{\mathrm{S}} / \mathrm{H}_{2}$ circuit samples this signal again with the $\overline{\mathrm{S}} / \mathrm{H} 2$ pulse.
For reducing the effect of the sampling pulse or other noise sources, the CDS circuit is formed with a differential structure.

Bias Error Amplifier Circuit

For stabilizing the bias level of the CDS circuit and reducing the offset of the AGC circuit, the bias error amplifier acts with the $\overline{\mathrm{OBP}}$ pulse during the OPB period.

AGC Amplifier Circuit

The AGC amplifier amplifies the video signal obtained by the CDS circuit. The gain of the AGC is controlled by the value of the AGCGAIN serial register. And the maximum gain of the AGC is controlled by the value of the GAINSEL serial register.

OPB Clamp Circuit

For clamping the level of the amplified signal to the black level, the OPB clamp circuit acts with the $\overline{\mathrm{OBP}}$ pulse during the OPB period.

Blanking Circuit

The output signal is fixed to the blanking level with the $\overline{\mathrm{BLK}}$ pulse. The blanking level is the sum of the black level and the offset value decided by the value of the OFFSET serial register.

A/D Converter Circuit

The $\overline{\mathrm{S}} / \mathrm{H}_{3}$ circuit samples the amplified signal with the $\overline{\mathrm{S}} / \mathrm{H}_{3}$ pulse and the A/D converter converts the sampled signal to 10-bit straight binary digital data. The clamp circuit placed in front of the A / D converter clamps the signal level beside the lower limit of the convertible input range with the $\overline{\text { ADCLP }}$ pulse. The clamped level is controllable by the voltage of the ADOFS pin.
The A/D conversion is executed at the rising edge of the ADCK clock, and the data is output at the falling edge.
The high level voltage of the outputs is controlled by the voltage of the Vlogic pin.

Standby Function

By making the $\overline{\text { STBY }}$ pin low, all actions of this IC stop and power consumption is decreased.
The outputs of the A / D converter (DO 0 to DO 9) turn to high impedance when on standby.

Serial Interface Circuit

The IR3Y38M has a serial interface to control the gain of the AGC amplifier and the offset of the blanking level. This interface is constituted by a shift register for serial-parallel conversion, data registers and D/A converters.

The data input to SDATA is fetched and shifted at
the rising edge of the SCK. While transmitting data, the SDATA must be low when the SCK falls. When the SDATA is high and the SCK falls, the data on the shift register is stored at the selected data register at the following falling edge of the SDATA. The stored data register is selected by the data of the Do and D1 bits.

GAIN SEL	MAXIMUM GAIN (dB)
0	22
1	25
2	28
3	31.5
4	34.5
5	38
6	41
7	43.5

DATA REGISTER	D9	D8	D7	D6	D_{5}	D 4	D 3	D 2	D 1	D 0
GAIN SEL						d 0	d 1	d 2	0	0
AGC GAIN	d 0	d 1	d 2	d 3	d 4	d 5	d 6	d 7	0	1
OFFSET			d 0	d 1	d 2	d 3	d 4	d 5	1	0
(Don't care)									1	1

LSB
MSB

TIMING CHART

PRECAUTIONS

Each Vcc1 to Vcc6 pin corresponds to the each GND1 to GND6 pin. Connect a ceramic capacitor as near the IC as possible between each corresponding Vcc pin and GND pin.

The GND1 pin is the ground of the CDS/ADC circuit handling a weak signal. Pay careful attention to the board layout of the GND1 pattern in order to avoid the potential fluctuation of the GND1 caused by the current of the other GND pins. Especially pay attention to the current of the GND6 pin's flowing spiky current.

All the GND pins must be at the same potential and not open. And keep the potential difference of each Vcc pin within 0.3 V .

The high level voltage of the outputs of the A / D
converter is controllable by the voltage of the VLogic pin, but take care that the high level voltage does not fall below about 1.5 V , in spite of making the Vlogic pin 0 V . This may cause the latch up of the following logic ICs if the power supply of this IC rises up faster than the power supply of the following logic. To avoid this problem, it is recommended to make the $\overline{\text { STBY }}$ pin low until the voltage of the logic power supply becomes stable. Take care too that the high level voltage does not rise above about Vcc - 1.0 V , in spite of making the Vlogic pin the Vcc potential.

Restore the value of the serial register when setting up the power supply or making the STBY pin high because the value will have been removed in that case.

ABSOLUTE MAXIMUM RATINGS
(Unless otherwise specified, $\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	RATING	UNIT
Supply voltage	VCC1-VCC6		7	V
Input voltage	VIN		-0.3 to $\mathrm{VCC}+0.3$	V
Power consumption	PD	$\mathrm{TA} \leq+25^{\circ} \mathrm{C}$	570	mW
PD derating ratio		$\mathrm{TA}>+25^{\circ} \mathrm{C}$	4.5	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating temperature	ToPR		-30 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	TSTG		-55 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	APPLICABLE PINS	RATING	UNIT
Supply voltage	VCC1-VCC6		4.75 to 5.25	V
Standard CCD input signal level	VCCD	CCDIN	200	$\mathrm{mVp}-\mathrm{p}$
Input "Low" voltage	VIL	$\overline{\text { ADCK }}, \mathrm{SCK}, \mathrm{SDATA}$, $\overline{\mathrm{STBY}}, \overline{\mathrm{CLP}}, \overline{\mathrm{S}} / \mathrm{H} 1, \overline{\mathrm{~S}} / \mathrm{H} 2$,	0 to 0.7	V
	Input "High" voltage	VIH	$\overline{\mathrm{S}} / \mathrm{H} 3, \overline{\mathrm{OBP}, \overline{\mathrm{BLK}}, \overline{\mathrm{ADCLP}}}$	2.1 to Vcc

ELECTRICAL CHARACTERISTICS

DC Characteristics

(Unless otherwise specified, $\mathrm{TA}=+25{ }^{\circ} \mathrm{C}, \mathrm{VcC1}=\mathrm{Vcc} 2=\mathrm{VCC3}=\mathrm{Vcc} 4=\mathrm{Vcc} 5=\mathrm{Vcc} 6=5.0 \mathrm{~V}$, VLOGIC $=3.3 \mathrm{~V}$, ADCK $=0 \mathrm{~V}, \mathrm{SCK}=0 \mathrm{~V}, \mathrm{SDATA}=0 \mathrm{~V}, \overline{\mathrm{STBY}}=3.3 \mathrm{~V}, \overline{\mathrm{CLP}}=0 \mathrm{~V}, \overline{\mathrm{~S}} / \mathrm{H} 1=0 \mathrm{~V}, \overline{\mathrm{~S}} / \mathrm{H} 2=0 \mathrm{~V}, \overline{\mathrm{~S}} / \mathrm{H} 3=0 \mathrm{~V}$, $\overline{\mathrm{BLK}}=3.3 \mathrm{~V}, \overline{\mathrm{OBP}}=0 \mathrm{~V}, \mathrm{SW} 42=\mathrm{OFF}, \mathrm{SW} 43=(\mathrm{a}), \overline{\mathrm{ADCLP}}=3.3 \mathrm{~V})$
The current direction flowing into the pin is positive direction.

- General

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply current (1)	IcC1	Measure pin 25 (Vcc1)	-	27	34	mA
Supply current (2)	IcC2	Measure pin 36 (VCC2).	-	2.3	2.8	mA
Supply current (3)	Icc3	Measure pin 38 (VCC3).	-	0.7	1.0	mA
Supply current (4)	IcC4	Measure pin 17 (VCC4).	-	13	20	mA
Supply current (5)	Icc5	Measure pin 15 (VCC5).	-	16	21	mA
Supply current (6)	Icc6	Measure pin 7 (Vcc6).	-	5.0	6.5	mA
Total supply current	Icc	Total of IcC1 to IcC6	-	63	77	mA
Standby supply current	Istby	$\overline{\text { STBY }}=0 \mathrm{~V}$, Total of Icc1 to Icc6.	-	4.5	6.5	mA
Input "Low" current (1)	ILL1	Apply to pin 28 ($\overline{\mathrm{CLP}}$), pin 29 ($\overline{\mathrm{S}} / \mathrm{H}_{1}$), pin 30 $(\overline{\mathrm{S}} / \mathrm{H} 2)$, pin $31(\overline{\mathrm{~S}} / \mathrm{H} 3)$, and pin $32(\overline{\mathrm{OBP}})$. $\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	-3.5	-2.0	-	$\mu \mathrm{A}$
Input "High" current (1)	IIH1	Apply to pin 28 ($\overline{\mathrm{CLP}}$), pin 29 ($\overline{\mathrm{S}} / \mathrm{H}_{1}$), pin 30 $(\overline{\mathrm{S}} / \mathrm{H} 2)$, pin $31(\overline{\mathrm{~S}} / \mathrm{H} 3)$, and pin $32(\overline{\mathrm{OBP}})$. $\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}$	-	0	0.1	$\mu \mathrm{A}$
Input "Low" current (2)	IIL2	Apply to pin 16 (SCK) and pin 19 (SDATA). $\mathrm{V} \text { IL }=0 \mathrm{~V}$	-0.3	-0.2	-	$\mu \mathrm{A}$
Input "High" current (2)	IIH2	Apply to pin 16 (SCK) and pin 19 (SDATA). $\mathrm{VIH}=3.3 \mathrm{~V}$	-	0	0.1	$\mu \mathrm{A}$
Input "Low" current (3)	IIL3	Apply to pin 35 ($\overline{\overline{B L K}})$ and pin 45 ($\overline{\text { ADCLP }})$. $\mathrm{VIL}=0 \mathrm{~V}$	-0.5	-0.3	0	$\mu \mathrm{A}$
Input "High" current (3)	ІІнз	Apply to pin 35 ($\overline{\mathrm{BLK}})$ and pin 45 ($\overline{\mathrm{ADCLP}})$. $\mathrm{V} 1 \mathrm{H}=3.3 \mathrm{~V}$	-	0	0.1	$\mu \mathrm{A}$
Input "Low" current (4)	IIL4	Apply to pin 13 (ADCK). $\mathrm{VIL}=0 \mathrm{~V}$	-3.5	-2.0	-	$\mu \mathrm{A}$
Input "High" current (4)	IIH4	Apply to pin 13 (ADCK). $\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}$	-	0	0.1	$\mu \mathrm{A}$
$\overline{\text { STBY }}$ voltage	V27	Open pin 27 ($\overline{\text { STBY }}$).	4.5	5.0	-	V
$\overline{\text { STBY }}$ impedance	Z27		70	110	140	k Ω

- CDS \& AGC Circuits

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CLPCAP voltage	V_{20}		2.9	3.2	3.6	V
CCDIN voltage	V21		2.3	2.5	2.8	V
REFIN voltage	V22		2.3	2.5	2.8	V
SHISET voltage	V24		1.5	1.7	1.9	V
REFCAP voltage	V26		2.9	3.2	3.6	V
OBCAP voltage	V33		3.3	3.7	4.0	V
AGCOUT voltage	V39		0.7	0.9	1.1	V
CCDIN impedance	Z21		9	13	18	k Ω
REFIN impedance	Z22		9	13	18	k Ω
REFCAP impedance	Z26		15	23	32	$\mathrm{k} \Omega$
OFSCTL impedance	Z34		6	9	12	k Ω
AGCCTL impedance	Z41		7	11	15	k Ω
CLPCAP charge current	IL20	$\text { CLPCAP }=2.8 \mathrm{~V}, \mathrm{OBP}=0 \mathrm{~V}$ Measure the current of CLPCAP.	-	-135	-110	$\mu \mathrm{A}$
CLPCAP discharge current	IH2O	$\mathrm{CLPCAP}=3.6 \mathrm{~V}, \mathrm{OBP}=0 \mathrm{~V}$ Measure the current of CLPCAP.	110	135	-	$\mu \mathrm{A}$
CLPCAP leakage current	Izzo	CLPCAP $=3.2 \mathrm{~V}, \mathrm{OBP}=3.3 \mathrm{~V}$ Measure the current of CLPCAP.	-0.5	0	0.5	$\mu \mathrm{A}$
OBCAP charge current	IL33	$\mathrm{OBCAP}=3.3 \mathrm{~V}, \mathrm{OBP}=0 \mathrm{~V}$ Measure the current of OBCAP.	-	-90	-65	$\mu \mathrm{A}$
OBCAP discharge current	IH33	$\mathrm{OBCAP}=4.1 \mathrm{~V}, \mathrm{OBP}=0 \mathrm{~V}$ Measure the current of OBCAP.	65	90	-	$\mu \mathrm{A}$
OBCAP leakage current	Iz33	$\mathrm{OBCAP}=3.7 \mathrm{~V}, \mathrm{OBP}=3.3 \mathrm{~V}$ Measure the current of OBCAP.	-0.5	0	0.5	$\mu \mathrm{A}$

- A/D Converter Circuit

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
ADOFS voltage	V42		3.0	3.3	3.6	V
ADIN voltage	V43	ADCLP $=0 \mathrm{~V}$	1.2	1.4	1.6	V
VRT voltage	V46		3.7	3.9	4.1	V
VRB voltage	V47		1.8	1.95	2.2	V
ADOFS impedance	Z42		50	70	90	$\mathrm{k} \Omega$
ADIN charge current	IL43	$\mathrm{ADIN}=1.0 \mathrm{~V}, \mathrm{ADCLP}=0 \mathrm{~V}$ Measure the current of ADIN.	-	-45	-30	$\mu \mathrm{A}$
ADIN discharge current	IH43	$\mathrm{ADIN}=1.8 \mathrm{~V}, \mathrm{ADCLP}=0 \mathrm{~V}$ Measure the current of ADIN.	30	45	-	$\mu \mathrm{A}$
ADIN leakage current	Iz43	$\text { ADIN = } 1.4 \mathrm{~V}, \mathrm{ADCLP}=3.3 \mathrm{~V}$ Measure the current of ADIN.	-0.3	0	0.3	$\mu \mathrm{A}$
Output "Low" voltage	Vol	$\text { SW43 = (b), ADCIN }=0.8 \mathrm{~V}$ Change the level of ADCK to $L \rightarrow H \rightarrow L$, then measure the voltages of DO_{0} to DO_{9} pins.	-	0.2	0.4	V
Output "High" voltage	Vон	$\text { SW43 = (b), ADCIN = } 3.5 \mathrm{~V}$ Change the level of ADCK to $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$, then measure the voltages of DO_{0} to DO_{9} pins.	2.9	3.1	-	V

AC Characteristics

(Unless otherwise specified, $\mathrm{TA}=+25{ }^{\circ} \mathrm{C}, \mathrm{Vcc} 1=\mathrm{Vcc2}=\mathrm{Vcc3}=\mathrm{Vcc4}=\mathrm{Vcc5}=\mathrm{Vcc6}=5.0 \mathrm{~V}$, VLogic $=3.3 \mathrm{~V}$, $\mathrm{ADCK}=0 \mathrm{~V}, \mathrm{SCK}=0 \mathrm{~V}$, SDATA $=0 \mathrm{~V}, \overline{\mathrm{STBY}}=3.3 \mathrm{~V}, \overline{\mathrm{CLP}}=3.3 \mathrm{~V}, \overline{\mathrm{~S}} / \mathrm{H}_{1}=0 \mathrm{~V}, \overline{\mathrm{~S}} / \mathrm{H} 2=0 \mathrm{~V}, \overline{\mathrm{~S}} / \mathrm{H} 3=0 \mathrm{~V}$, $\overline{\mathrm{BLK}}=3.3 \mathrm{~V}, \overline{\mathrm{OBP}}=3.3 \mathrm{~V}, \mathrm{SW} 42=\mathrm{OFF}, \mathrm{SW} 43=(\mathrm{a}), \overline{\mathrm{ADCLP}}=3.3 \mathrm{~V},(\mathrm{OFFSET})=32)$
The value of the serial register is written with decimal.

- CDS \& AGC Circuits

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
AGC minimum gain	Gan	$\begin{aligned} & (\mathrm{GAIN} \text { SEL) }=0,(\text { AGC GAIN })=0 \\ & \overline{\mathrm{CLP}}=\mathrm{SG} 2, \overline{\mathrm{OBP}}=\mathrm{SG} 3 \end{aligned}$ Input the attenuated SG1 ($\mathrm{f}=2 \mathrm{MHz}, \mathrm{V}=1.6$ Vp-p) to the SIN and seek the attenuation amount to make the amplitude of AGCOUT $1.6 \mathrm{Vp}-\mathrm{p}$.	11	12	13	dB
AGC maximum gain (0)	Gaxo	(GAIN SEL) $=0$, (AGC GAIN) $=255$ Measure the gain using the same procedure as for the measurement of Gan.	20.5	22	24.5	dB
AGC maximum gain (1)	Gax1	$($ GAIN SEL $)=1,($ AGC GAIN $)=255$ Measure the gain using the same procedure as for the measurement of Gan.	23	25	28	dB
AGC maximum gain \| (2)	Gax2	(GAIN SEL) $=2$, (AGC GAIN) $=255$ Measure the gain using the same procedure as for the measurement of Gan.	26	28	31	dB
AGC maximum gain (3)	Gax3	(GAIN SEL) $=3$, (AGC GAIN) $=255$ Measure the gain using the same procedure as for the measurement of Gan.	28.5	31.5	35	dB
AGC maximum gain (4)	Gax4	(GAIN SEL) $=4$, (AGC GAIN) $=255$ Measure the gain using the same procedure as for the measurement of Gan.	31	34.5	38	dB
AGC maximum gain (5)	Gax5	(GAIN SEL) $=5$, (AGC GAIN) $=255$ Measure the gain using the same procedure as for the measurement of Gan.	34	38	42	dB
AGC maximum gain (6)	Gax6	$($ GAIN SEL $)=6$, (AGC GAIN) $=255$ Measure the gain using the same procedure as for the measurement of Gan.	36.5	41	44.5	dB
AGC maximum gain (7)	Gax7	(GAIN SEL) $=7$, (AGC GAIN) $=255$ Measure the gain using the same procedure as for the measurement of Gan.	38.5	43.5	47.5	dB
AGC gain variable width	Gar	Gar = Gaxt - Gan	26.5	31.5	35.5	dB

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Bandwidth (1) (Minimum gain)	ftN	$\begin{aligned} & (\mathrm{GAIN} \text { SEL) }=0,(\text { AGC GAIN })=0 \\ & \overline{\mathrm{CLP}}=\mathrm{SG} 2, \overline{\mathrm{OBP}}=\mathrm{SG} 3 \end{aligned}$ Input the SG1 ($\mathrm{f}=2 \mathrm{MHz}, \mathrm{V}=0.2 \mathrm{Vp}-\mathrm{p}$) to the SIN and measure the amplitude of the AGCOUT. Increase the frequency and measure the frequency when the amplitude attenuates to -3 dB .	24	35	-	MHz
Bandwidth (2) (Maximum gain)	ftx	$(\text { GAIN SEL })=7,(\text { AGC GAIN })=255$ $\overline{\mathrm{CLP}}=\mathrm{SG} 2, \overline{\mathrm{OBP}}=\mathrm{SG} 3$ Input the SG1 ($\mathrm{f}=2 \mathrm{MHz}, \mathrm{V}=8 \mathrm{mVp}-\mathrm{p}$) to the SIN and measure the amplitude of the AGCOUT. Increase the frequency and measure the frequency when the amplitude attenuates to -3 dB .	13	20	-	MHz
OFFSET adjustment limit (1) (OFFSET = 0)	Vbon	$\begin{aligned} & (\mathrm{GAIN} \text { SEL })=0,(\mathrm{AGC} \text { GAIN })=0 \\ & \mathrm{SIN}=\mathrm{GND} 1,(\mathrm{OFFSET})=0, \overline{\mathrm{CLP}}=0 \mathrm{~V}, \\ & \overline{\mathrm{OBP}}=0 \mathrm{~V} \end{aligned}$ Measure the voltage of the AGCOUT at BLK $=3.3 \mathrm{~V}$ and define it VBO11. Measure the one similarly at BLK $=0 \mathrm{~V}$ and define it VBO12. VBON $=$ VBO12 - VBO11	-	-75	-60	mV
OFFSET adjustment limit (2) (OFFSET = 63)	Vвох	$\begin{aligned} & (\text { GAIN SEL })=0,(\text { AGC GAIN })=0 \\ & \text { SIN }=\text { GND1, }(\text { OFFSET })=63, \overline{C L P}=0 \mathrm{~V}, \\ & \overline{\mathrm{OBP}}=0 \mathrm{~V} \end{aligned}$ Measure the VBO21 and VBO22 similarly to above-mentioned method. VBON $=$ VBO22 - VBO21	50	65	-	mV
Output dynamic range (1) (Minimum gain)	Vdyn	$\begin{aligned} & \text { (GAIN SEL) }=0,(\text { AGC GAIN })=0 \\ & \overline{\mathrm{CLP}}=\mathrm{SG} 2, \overline{\mathrm{OBP}}=\mathrm{SG} 3 \end{aligned}$ Input the SG1 ($\mathrm{f}=2 \mathrm{MHz}, \mathrm{V}=0.9 \mathrm{Vp}-\mathrm{p}$) to the SIN and measure the amplitude of the AGCOUT.	2.0	2.2	-	Vp-p
Output dynamic range (2) (Maximum gain)	Vdyx	$\begin{aligned} & (\text { GAIN SEL })=7,(\text { AGC GAIN })=255 \\ & \overline{\mathrm{CLP}}=\text { SG2, } \overline{\mathrm{OBP}}=\text { SG3 } \end{aligned}$ Input the SG1 ($\mathrm{f}=2 \mathrm{MHz}, \mathrm{V}=50 \mathrm{mVp}-\mathrm{p}$) to the SIN and measure the amplitude of the AGCOUT.	2.0	2.2	-	Vp-p

- A/D Converter Circuit

(Unless otherwise specified, $\mathrm{TA}=+25{ }^{\circ} \mathrm{C}, \mathrm{Vcc} 1=\mathrm{VcC2}=\mathrm{VcC3}=\mathrm{Vcc} 4=\mathrm{Vcc5}=\mathrm{Vcc6}=5.0 \mathrm{~V}$, VLOGIC $=3.3 \mathrm{~V}$, $\mathrm{ADCK}=18 \mathrm{MHz}$ square wave, $\overline{\mathrm{SCK}}=0 \mathrm{~V}, \overline{\mathrm{SDATA}}=0 \mathrm{~V}, \overline{\mathrm{STBY}}=3.3 \mathrm{~V}, \overline{\mathrm{CLP}}=3.3 \mathrm{~V}, \overline{\mathrm{~S}} / \mathrm{H} 1=0 \mathrm{~V}, \overline{\mathrm{~S}} / \mathrm{H}_{2}=0 \mathrm{~V}$, $\overline{\mathrm{S}} / \mathrm{H} 3=0 \mathrm{~V}, \overline{\mathrm{BLK}}=3.3 \mathrm{~V}, \overline{\mathrm{OBP}}=3.3 \mathrm{~V}, \mathrm{SW} 42=\mathrm{OFF}, \mathrm{SW} 43=(\mathrm{b}), \overline{\mathrm{ADCLP}}=3.3 \mathrm{~V})$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Clamp value	Dclp	$\begin{aligned} & \mathrm{SW43}=(\mathrm{a}) \\ & \overline{\mathrm{ADCLP}}=0 \mathrm{~V} \\ & \mathrm{ADCIN}=G N D 4 \end{aligned}$ Read the output value of DOo to DO9.	56	61	66	-
Clamp value adjustment limit (1)	Dclpn	$\begin{aligned} & \mathrm{SW42}=\mathrm{ON}, \mathrm{~V} 42=5.0 \mathrm{~V}, \overline{\mathrm{ADCLP}}=0 \mathrm{~V}, \\ & \mathrm{ADCIN}=\mathrm{GND} 4 \\ & \text { Read the output value of DO to DO9. } \end{aligned}$	31	36	41	-
Clamp value adjustment limit (2)	Dclpx	$\begin{aligned} & \mathrm{SW} 42=\mathrm{ON}, \mathrm{~V} 42=1.6 \mathrm{~V}, \overline{\mathrm{ADCLP}}=0 \mathrm{~V}, \\ & \mathrm{ADCIN}=\mathrm{GND} 4 \\ & \text { Read the output value of DOo to DO9. } \end{aligned}$	81	86	91	-
Differential linearity error	DLE	$\mathrm{ADCIN}=\mathrm{SG} 4$ Read the output value of DO 0 to DO_{9} at about	-	± 0.5	± 0.9	LSB
Integral linearity error	ILE	the histogram and obtain the DLE. Integrate the histogram and obtain the ILE.	-	± 3	± 7	LSB
Propagation delay $(\mathrm{L} \rightarrow \mathrm{H})$	tDLH	$\mathrm{ADCIN}=\mathrm{SG} 4, \mathrm{CL}=20 \mathrm{pF}$ Measure the delay time from the falling edge (50\%) of the ADCK to the rising edge (50%) of the DO 0 to DO 9 .	15	26	38	ns
Propagation delay $(\mathrm{H} \rightarrow \mathrm{~L})$	tDHL	$\mathrm{ADCIN}=\mathrm{SG} 4, \mathrm{CL}=20 \mathrm{pF}$ Measure the delay time from the falling edge (50%) of the ADCK to the falling edge (50\%) of the DO 0 to DO 9 .	15	26	38	ns
Output rise time	twLH	$\mathrm{ADCIN}=\mathrm{SG} 4, \mathrm{CL}=20 \mathrm{pF}$ Measure the rise time ($10 \% \rightarrow 90 \%$) of the DOo to DOs.	10	17	25	ns
Output fall time	twhL	$\mathrm{ADCIN}=\mathrm{SG} 4, \mathrm{CL}=20 \mathrm{pF}$ Measure the fall time $(90 \% \rightarrow 10 \%)$ of the DOo to DOs.	10	17	25	ns

Measurement Waveforms

Test Circuit

48 QFP (QFP048-P-0707)

